Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster.
نویسندگان
چکیده
A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coli alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of eutE is most probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.
منابع مشابه
A pH-sensitive function and phenotype: evidence that EutH facilitates diffusion of uncharged ethanolamine in Salmonella enterica.
The eutH gene is part of an operon that allows Salmonella enterica to use ethanolamine as a sole source of nitrogen, carbon, and energy. Although the sequence of EutH suggests a role in transport, eutH mutants use ethanolamine normally under standard conditions (pH 7.0). These mutants fail to use ethanolamine at a low pH. Evidence is presented that protonated ethanolamine (Eth0) does not enter ...
متن کاملFunctions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium.
When B12 is available, Salmonella typhimurium can degrade ethanolamine to provide a source of carbon and nitrogen. B12 is essential since it is a cofactor for ethanolamine ammonia-lyase, the first enzyme in ethanolamine breakdown. S. typhimurium makes B12 only under anaerobic conditions; in the presence of oxygen, exogenous B12 must be provided to permit ethanolamine utilization. Genes required...
متن کاملEvidence that a metabolic microcompartment contains and recycles private cofactor pools.
Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile ...
متن کاملMinimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome.
During growth on ethanolamine, Salmonella enterica synthesizes a multimolecular structure that mimics the carboxysome used by some photosynthetic bacteria to fix CO(2). In S. enterica, this carboxysome-like structure (hereafter referred to as the ethanolamine metabolosome) is thought to contain the enzymatic machinery needed to metabolize ethanolamine into acetyl coenzyme A (acetyl-CoA). Analys...
متن کاملCloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami
Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 177 5 شماره
صفحات -
تاریخ انتشار 1995